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INTRODUCTION

This is a study of a mathematical model describing
the spatiotemporal dynamics of gap gene expression
patterns in the fruit fly Drosophila melanogaster. The
gap gene system is one of the four in the system of seg-
mentation genes in 

 

Drosophila

 

. The segmentation gene
expression determines the morphology of repeating
units of the fly body called segments [1, 2].

Segment determination takes place at the embryo
development stage from about the 10th nuclear cleav-
age cycle to the end of 14 A. The whole embryo in this
period is one big cell with many nuclei inside (syncytial
blastoderm). The cell membranes begin to grow around
nuclei only in the middle of cycle 14 A. The segmenta-
tion gene system includes maternal coordinate genes,
gap genes, pair-rule genes, and segment-polarity genes
[3, 4]. The spatial gradients of morphogen protein con-
centrations coded by maternal coordinate genes 

 

bicoid

 

(

 

bcd

 

), 

 

hunchback

 

 (

 

hb

 

), and 

 

caudal

 

 (

 

cad

 

) provide the
initial conditions for cell fate determination along the
anteroposterior (A–P) axis of the embryo. The other
three classes of the segmentation system consist of
zygotic genes. In the course of development, the gap
and pair-rule gene expression patterns control the pat-
terns for segment-polarity gene family, whose most
important constituents are genes 

 

wingless

 

 and

 

engrailed

 

. The first transcripts of these genes appear
late in 14 A. These genes are the last element determin-
ing the pre-pattern of the final segmentation [3, 4].

There are several models of the gap gene network
[5–9]. Here we develop a model [9, 10] that in our opin-
ion currently provides the best spatiotemporal approxi-
mation of the experimental data. One of the problems

found in the model is that solutions prove not very sta-
ble against perturbations of initial conditions and
parameter values. The parameter values in the model
are found by fitting the solution to experimental expres-
sion patterns at the time interval 0 

 

≤

 

 

 

t

 

 

 

≤

 

 

 

τ

 

 covering
cleavage cycles 13 and 14 A, which is about 71 min. It
turns out that at these parameter values the solution
holds at time 

 

t

 

 = 

 

τ

 

, corresponding to the end of cycle 14
A and start of gastrulation, but changes its shape signif-
icantly if one continues integrations at 

 

t

 

 > 

 

τ

 

. In other
words, solutions at the beginning of gastrulation are far
from the actual attractors in the model, where attractors
mean the limit states of solutions at large times 

 

t

 

 

 

�

 

 

 

τ

 

(they are stationary patterns in the model). Following
the dynamical systems theory, it is reasonable to sup-
pose that robustness could be improved in the reverse
situation, in which solutions at 

 

t

 

 = 

 

τ

 

, which are the final
patterns for the biologically important time period,
would not essentially change at 

 

t

 

 > 

 

τ

 

, i.e., be asymptot-
ically stable at large times and, therefore, close to the
attractors in the model.

To check this idea, we have modified the model by
applying an additional restriction for solutions to be
asymptotically stable at large times. We have found
three sets of parameter values providing good fit. The
stability of solutions in these three models has been
compared to that in seven variants of the initial model
[9, 10].

The solution stability in mathematical models of
various biological systems in the general context deter-
mines the property known as robustness of the system.
The latter can be defined as the ability of the system to
maintain a certain “function” under noisy conditions of
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various nature [11]. Two types of noise sources are usu-
ally recognized. The external noise is determined by
factors of the external medium. The internal noise is
associated with the basic variability of the mechanisms
underlying the system function. At the level of model
equations, the external noise is expressed through per-
turbations of parameter values. The influence of inter-
nal noise can be modeled by stochastic perturbations of
solutions at various time moments, since, strictly
speaking, protein concentrations are not deterministic
functions of time.

We study the stability of the gap gene expression
model under perturbations of both types, trying to max-
imally approach the noise estimates from experimental
data in a mathematical description of the perturbations.

THE MODEL

 

Equations

 

We model the expression in a gene network consist-
ing of zygotic gap genes 

 

hb

 

, 

 

Krüppel

 

 (

 

Kr

 

), 

 

giant

 

 (

 

gt

 

),

 

knirps

 

 (

 

kni

 

), 

 

tailless

 

 (

 

tll

 

), and

 

 cad

 

. Because the expres-
sion patterns for these genes are almost constant along
the dorsoventral axis of the embryo, we consider a line
of nuclei along the A–P axis. The patterns are functions
of a unidimensional spatial variable along this axis. We
study the gene expression in a spatial domain from 35
to 92% of the A–P axis length.

The internal state of the 

 

i

 

-th nucleus at moment 

 

t

 

 is

determined by the set of concentrations (

 

t

 

) of pro-
teins encoded by genes with indices 

 

a

 

. The concentra-
tion dynamics depends on the rates of three processes:
protein synthesis, diffusion, and breakdown. These pro-
cesses are described by the sum of three terms in the
right-hand side of the model equations [5, 9, 12]:

(1)

where 

 

a

 

 = 1, …, 

 

N

 

, 

 

N

 

 = 6 is the total number of genes
in the network; 

 

i

 

 = 1, …, 

 

M

 

, 

 

M

 

 = 

 

M

 

(

 

n

 

) is the number of
nuclei that changes in time by nuclear divisions in the
system, 

 

n

 

 is the current number of the cleavage cycle.
The coefficient 

 

R

 

a

 

 defines the maximal possible protein
synthesis rate for gene 

 

a

 

, and 

 

D

 

a

 

 and 

 

λ

 

a

 

 are diffusion
and degradation constants, respectively. The parame-
ters 

 

T

 

ab

 

 characterize the regulatory action on gene 

 

a

 

protein synthesis by the protein of gene 

 

b

 

. The quantity

 describes the time-constant concentration of
maternal protein Bcd in nucleus 

 

i

 

. The relative rate of

 

a

 

-th protein synthesis is quantitated by the sigmoid
function 

 

g

 

 of the form

v i
a

dv i
a

dt
--------- χ t( )R

a
g T

ab
v i

b
m

a
v i

Bcd
h

a
+ +

b 1=

N

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

=

+ D
a

n( ) δi
1
v i 1–

a
v i

a
–( ) δi

M
v i 1+

a
v i

a
–( )+[ ] λa

v i
a
,–

v i
Bcd

.

The graph of g(y) is shown in Fig. 1. The argument
of g in Eqs. (1) describes the sum of all inputs to regu-
lation of a-th protein synthesis. The starting point in
time is at the beginning of cleavage cycle 13, and solu-
tions are biologically meaningful until the end of cycle
14 A. This period consists of the following parts: 0 ≤ t <
16 min is the interphase period in cycle 13; 16 ≤ t <
21.1 min is the mitosis period in cycle 13; and 21.1 ≤ t ≤
τ = 71.1 min is the interphase in cycle 14 A. The func-
tion χ(t) models the mitosis at the end of cycle 13.
Namely, χ(t) ≡ 1 during the interphase, and χ(t) ≡ 0 dur-
ing the mitosis, accounting for the fact that protein syn-
thesis shuts down for this time.

The number of nuclei M(n) is constant during each
cycle and doubles at the transition from cycle 13 to
14 A owing to nuclei cleavage. We take M = 30 in cycle
13 (t < 21.1 min) and M = 58 in 14 A (t ≥ 21.1 min; after
the division of two boundary nuclei, two of the four
daughter nuclei are excluded from the model as leaving

the spatial domain). The coefficients  and  in the
diffusion term account for the boundary nuclei effect.

We have  = 0 for i = 1, which means that diffusion
from the first nucleus occurs only to the second one, and

 = 1 otherwise. The multiplier  similarly discrimi-
nates the nucleus i = M. The diffusion coefficient Da(n)
depends on the cycle number n as Da(n) = 4Da(n – 1). The
formula follows from the assumption that the diffusion
coefficient is inversely proportional to the squared dis-
tance between neighboring nuclei, and this distance is
halved after each division.

The initial conditions for Eqs. (1) are as follows.

The initial values (0) and (0) in each nucleus
equal the concentrations of maternal proteins Cad and

Hb, respectively. For all other genes, (0) = 0.
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1 y
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Fig. 1. The graph of g(y).
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Optimization of Parameters under Requirement 
of Asymptotic Stability

None of the parameters (Ra, Da, λa, Tab, ma, ha) in
model (1) are known a priori, and their values can be
found by fitting the solution to experimental data. This
has been done before [9]; in contrast, our aim here was
to find parameter values that would provide a solution
close to experimental patterns at the time interval 0 ≤
t ≤ τ and make the solution at t = τ almost stationary at
times t > τ (i.e. make the solution at the gastrulation
stage close to the actual attractor).

One should emphasize that model (1) has no biolog-
ical sense at times t > τ, because new complex pro-
cesses start after the beginning of gastrulation, but these
are not taken into account in the equations. We should
consider the solution behavior at these times as artifi-
cial, and the control of this behavior is completely in
our hands unless it affects the correct dynamics in the
0 ≤ t ≤ τ period. Therefore, the biological meaning of
this optimization problem is not in trying to model the
expression patterns at times t > τ. The goal is to
improve the stability of solutions at t ≤ τ by choosing
the best description at t > τ.

The optimization procedure should minimize the
functional

(2)

where the difference is taken between the model and
the experimental concentrations in each nucleus. The
summation is performed over all genes, nuclei, and K
time moments tk for which the data exist. The overall
number of terms in (2) is denoted as L. The experimen-
tal data are the integrated expression patterns for each
gene from the FlyEx database [13, 14]. The integrated

F
1
L
--- v i

a
tk( )model v i

a
tk( )data–( )

2

a i k, ,
∑=

patterns are average expression profiles across many
embryos. The data at the interval 0 ≤ t ≤ τ are used at
one moment in cleavage cycle 13 and eight moments in
14 A. To provide asymptotic stability of the solution
from t = τ at large times, additional “artificial” data are
used in functional (2), obtained by copying data from
t  = τ to seven moments in the interval 100 ≤ t ≤
2000 min. Therefore, we have K = 16. The optimization
has been done by the simulated annealing method mod-
ified for parallel calculations [5, 15].

Rationale for Using Attractors 
Based on Experimental Data Analysis

We use the requirement for solutions at gastrulation
to be close to attractors only to increase the solution sta-
bility. The validity of this requirement can be proved or
disproved only by the quality of modeling results.
However, we believe that the analysis of experimental
data supports the hypothesis of quasistationarity for
expression patterns setting in at the end of cycle 14 A.

Using experimental gap gene expression patterns
from FlyEx, obtained by staining embryos with fluores-
cent antibodies and subsequent scanning confocal
microscopy [14], we investigated the variation of
experimental protein concentration functions in differ-
ent embryos, called “individual” concentration curves,
around the all-embryos-averaged functions at various
times. The data were available for ten moments, called
time classes: cleavage cycles 12 and 13 and eight
moments T1–T8 in 14 A. As an example, Figs. 2a, 2b
show the spread of individual concentration curves for
the Kr protein around the averaged curve at T2 and T8.
One can see that the embryo-to-embryo variability at
earlier times is much larger than at T8, which is close to
the onset of gastrulation.
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Fig. 2. The canalization effect for the experimental individual curves of gap gene protein concentrations during the early develop-
ment of Drosophila embryo. The effect is demonstrated for the Kr protein. Panels (a) and (b) show the individual (grey curves) and
the all-embryos-averaged Kr concentrations (black curves) at time classes (a) T2 and (b) T8. The spatial coordinate along the
abscissa is the percentage of the A–P axis length. Panel (c) presents the embryos-averaged σrms from (3) for Kr and the standard
deviation (error bars) as functions of time class. The Ω domain in (3) is the 40–60% range of the A–P axis, which is the Kr expres-
sion domain. The time classes include one moment each in cycles 12 and 13 and eight moments (T1–T8) in 14 A, numerated from
1 to 10 in this order. All experimental data are from FlyEx [14]. The samples of embryos with measured Kr protein concentration
contain 8 embryos in cycle 12 and 21–46 in cycle13 and at T1–T8. The processing procedure for the experimental data in time
classes 1–3 differs from that in classes 4–10 [14]. Panels (a) and (b) are adapted from [16, 18].
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To estimate the embryo-to-embryo variability
numerically, the following relative root-mean-square
(rms) deviation of individual concentrations from the
average was calculated for each protein and time
moment in each fixed embryo:

, (3)

where v(x) is the protein concentration function in the
embryo, vmean(x) is the embryos-averaged concentra-
tion function, x is the coordinate along the A–P axis of
the embryo, Ω is the domain in the A–P axis, and |Ω| is
the length of this domain. Figure 2c shows the
embryos-averaged value of σrms for Kr as a function of
time class. It is evident that the embryo-to-embryo vari-
ability is essentially reduced during cycles 12–14 A, i.e.
the concentration “trajectories” from different embryos
are canalized into a common stable pattern by the end
of 14 A.

An additional argument in favor of quasistationarity
is the known effect of positional error filtration in the
gap gene expression [16]. This effect describes the
reduction with time of embryo-to-embryo variability of
spatial expression domain borders. For example, let us
define the right border of the expression domain for
gene Kr as the most P-proximal point at the A–P axis at
which the Kr protein concentration takes its half-maxi-
mal value. Analysis of the same data as in Fig. 2 yields

σrms
1
Ω
-------

vmean x( ) v x( )–
vmean x( )

--------------------------------------⎝ ⎠
⎛ ⎞

2

xd

Ω
∫=

the following values of the border standard deviation in
the sample of several embryos: 1.6% of the A–P axis
length in the beginning of cycle 14 A and 0.6% in the end.

MODELING RESULTS

We have found three sets of parameter values,
shown in Table 1 (see also Appendix), that provide
good correspondence between solutions and data; the
models with these parameter values are denoted as A1, A2,
and A3. The solution graphs in A2 are shown in Fig. 3 in
comparison with the data at three time moments. Solu-
tions in A1 and A3 have similar graphs. It is seen that the
models approximate the experimental data dynamics
with good precision. The correspondence between the
solutions and the data takes place not only in the end of
cycle 14 A, but also at the intermediate moments of
embryo development.

Below we compare the stability properties of solu-
tions in models A1–A3 with those in seven best variants
of the initial model [9, 10], obtained by optimization of
parameter values in (1) without the requirement of
asymptotic stability at gastrulation. We denote these
models as B1–B7.

Table 2 lists the resulting values F0 of functional (2)
after optimization in models A1–A3 and B1–B7. In the
models with fitting to attractor they are slightly larger
than in models Bj . However, the difference is not great

Table 1.  Parameter values in models A1–A3

T ab

Ra Da λa ma ha

cad hb Kr gt kni tll

cad –0.082 –0.054 –0.023 –0.025 –0.020 0.005 A1 14.955 0.056 0.044 0.001 10.666

–0.036 –0.019 –0.001 –0.018 –0.013 –0.025 A2 14.996 0.198 0.039 –0.264 7.028

–0.088 –0.036 –0.036 –0.053 –0.031 –0.043 A3 14.993 0.198 0.040 –0.188 15.335

hb –0.002 –0.010 –0.014 –0.015 –0.190 –0.019 A1 14.985 0.179 0.069 0.053 2.371

–0.007 –0.018 –0.029 –0.039 –0.145 –0.024 A2 15.000 0.199 0.072 0.123 3.823

0.030 0.001 –0.001 –0.007 –0.114 –0.002 A3 14.961 0.016 0.053 0.104 –3.500

Kr 0.063 –0.024 0.036 –0.051 –0.031 –0.193 A1 12.258 0.200 0.063 0.137 –5.153

–0.082 –0.044 –0.019 –0.139 –0.037 –0.053 A2 15.000 0.200 0.068 –0.177 15.075

0.090 –0.004 0.057 –0.104 –0.023 –0.017 A3 10.278 0.200 0.051 0.150 –11.301

gt 0.045 –0.017 –0.128 0.001 –0.010 –0.028 A1 14.955 0.127 0.068 0.184 –3.909

0.085 0.025 –0.030 0.041 0.021 –0.020 A2 14.950 0.120 0.086 0.179 –13.813

0.037 0.031 –0.117 0.018 –0.001 –0.018 A3 14.984 0.138 0.078 –0.060 –3.500

kni 0.044 –0.014 –0.026 –0.047 0.026 –0.178 A1 11.451 0.199 0.059 –0.048 –0.937

–0.035 –0.054 –0.035 –0.042 0.010 –0.107 A2 14.993 0.200 0.082 –0.011 6.751

0.029 –0.064 –0.011 –0.005 0.008 –0.127 A3 14.431 0.200 0.063 0.152 –3.500

tll –0.071 –0.076 –0.063 –0.089 –0.041 0.000 A1 13.235 0.197 0.080 –0.110 13.065

0.096 0.019 0.044 0.036 –0.099 0.048 A2 14.992 0.195 0.061 –0.070 –15.781

0.191 0.059 –0.037 0.092 –0.001 0.085 A3 14.991 0.187 0.057 –0.026 –30.979
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and is not related to any defects in the solutions, as evi-
dent, e.g., from Fig. 3.

The proximity of solutions at the end of cycle 14 A
to actual attractors can be visually estimated in Fig. 4.
The solutions at t = τ are very close to the attractors in
all three A models, which means that the solutions at
gastrulation are asymptotically stable with t  ∞. The
concentration curves for proteins Hb, Gt, and Tll in A1
from the moment t = τ are less close to the attractor than
for other proteins, while A2 and A3 provide much the
same proximity for all genes.

The asymptotic stability of solutions at t = τ can be
numerically characterized, for example, by their rms
deviations from the attractors:

, (4)

where ( )attr =  is the stationary attractor.

The summation is performed over all genes and nuclei,
and the sum is divided by the total number MN of terms

E
1

MN
--------- v i

a τ( ) v i
a( )attr–( )

2

a i,
∑=

v i
a

v i
a

t( )
t ∞→
lim

therein. The proximity of solutions at gastrulation to
attractors in Aj and Bj in terms of E is shown in Table 2.
The solutions in B2 and B4 tend to oscillating attractors,
and, strictly speaking, E is not defined in this case.
However, the table contains the values for these models
as well, but they have been calculated by taking values
of the oscillating solutions at a fixed large time instead

of ( )attr in (4). It follows from the table that, as
expected, solutions in the model at the end of cycle 14 A
are unstable and vary substantially at large times if no
additional constraints have been imposed on the solu-
tion dynamics. The “worst” of our model versions (A1)
has only half the E estimated for the “best” of the initial
models (B7).

STABILITY AGAINST PERTURBATIONS
IN MODELS OF TWO TYPES

In this Section we describe the stability of solutions
in models Aj and Bj under perturbations of concentra-

tions  and parameter values. We consider three kinds

v i
a

v i
a
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Fig. 3. The solutions in model A2 (solid curves) in comparison with the data (dashed curves) at the following three time moments:
the early cycle 14 A (t = 24.225 min; upper row of panels), the mid cycle 14 A (t = 42.975 min; middle row), and the late cycle 14 A
(t = 67.975 min; lower row). The abscissa axis shows the dimensionless spatial coordinate x parameterizing the nucleus i position
in the A–P axis domain under consideration (35–92% of the axis length). The ordinate gives the protein concentrations v (in con-
ventional units) corresponding to the labels on the panels. The data for Tll in the early cycle 14 A and for Cad in the late cycle have
not been used in constructing models A1–A3; therefore, these graphs are absent from the corresponding panels.

Table 2.  The values F0 from (2) obtained upon optimization, and E from (4) in models A1–A3 and B1–B7. Models B2 and B4
have oscillating attractors. The numerical solutions at t = 10000 have been taken as the attractors

A1 A2 A3 B1 B2 B3 B4 B5 B6 B7

F0 14.1 14.0 13.7 11.2 10.9 10.6 10.2 10.3 10.2 9.4

E 23.9 7.5 12.2 78.3 93.1 83.1 74.5 82.2 83.1 45.9
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of perturbation, namely, the perturbations of initial con-

ditions (0), concentrations (t) at various
moments tk ≠ 0, and parameter values. The variation of
initial conditions is supposed to model the embryo-to-
embryo variability of early expression data, while the
fluctuations at different positive times are related to the
nucleus-to-nucleus noise taking place in each embryo.

Perturbation of Initial Conditions

The spatial curves of experimental gap gene protein
concentrations scanned in various embryos (the indi-
vidual curves) in the 12th cycle were used as the per-
turbed initial conditions [14]. That was the way the

v i
a

v i
a

study of stability was connected with the investigation
of the embryo-to-embryo variability of early experi-
mental data.

The data contain 15 distinct individual curves for
Cad, 20 for Hb, 8 for Kr, 3 for Gt, 1 for Kni, and 14 for
Tll proteins. Figure 5 shows the graphs of initial con-

centrations (0) and (0) in the model in com-
parison with the mean and its standard deviation in the
sample of these experimental individual curves. It can
be seen that the initial concentration profile for Cad in
the model is quite close to the averaged experimental
curve, while for the initial Hb concentration this is not
so. The latter fact restricts the possibility of directly
connecting the dynamics of variability in experimental
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Fig. 4. The solutions in models A1 (upper row of panels), A2 (middle row), and A3 (lower row) at t = τ (solid curves) in comparison
with the attractors (dashed curves). The solutions in the models at t = 10000 min are shown as the attractors. Other notations are as
in Fig. 3.
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Fig. 5. The initial conditions in the model (solid curves) for Cad and Hb concentrations in comparison with the means (points) and
standard deviations (error bars) in the sample of experimental concentrations of these proteins in each nucleus. The abscissa gives
the nuclei numbers i in the considered spatial domain on the A–P axis in the 13th cleavage cycle. The ordinate shows the protein
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data with that in models Aj and Bj. However, we believe
that comparison between the variabilities in models of
the two types still makes sense, and, hence, we apply
the perturbations as stated above.

Such a difference in the initial concentration (0)
is a consequence of the FlyEx database development.

The curve (0) in models Bj , shown in Fig. 5, has
been calculated by averaging individual curves from
cycle 12. However, the data added to FlyEx in the last
years have shifted the average Hb concentration. We
have chosen the same initial conditions in models Aj as
in Bj for correct comparison between the models.

We added the model initial conditions to the present
sample of individual initial curves and selected the per-
turbed initial conditions from this sample as follows.
We took all individual curves for Cad and Hb (336
combinations); for each (Cad, Hb) pair, from the set of
individual curves for the other four genes we selected
five curves that were closest to the model initial condi-
tions (5 from 1080 combinations). Therefore, from the
total number of 362 880 combinations of individual
experimental curves for the six genes (including the
model initial conditions), we constructed 1680 sets of
curves used as the perturbed initial conditions.

We calculated the functional F for each perturbed
solution, characterizing the rms distance between the
solution and the experimental data. As the unperturbed
solutions in all models were close to the data, the scaled
values F/F0 could be used to estimate the deviation of
perturbed solutions from the unperturbed ones. The
mean F/F0 with standard deviations are plotted in Fig.
6 versus E from Table 2. The figure shows the clear
clusterization of mean F/F0 in the models of the two
types. Namely, these values are less than 5 in Aj and
larger than 5.5 in Bj. An important point is the model B7

v i
Hb

v i
Hb

position in the figure. It follows from Table 2 that E in
model B7 is significantly smaller than in the other Bj but
significantly larger than in Aj. Hence, the solutions in B7
at t = τ are close enough to an attractor to consider
model B7 as “intermediate” between Aj and the other Bj.
Figure 6 demonstrates that the average deviation of per-
turbed solutions in B7 also takes a position at the bound-
ary between the two clusters.

The coefficient of correlation between the average
F/F0 and E is r = 0.80, and it is 0.84 when models B2
and B4 are discarded as having nonstationary attractors.

In order to analyze the dispersion of perturbed solu-
tions around the mean in more details, we considered

the sample of values { (tk)} across all perturbed solu-

tions , where tk were the time moments for which the
experimental data existed (k = 1, …, K). We calculated
the standard deviation in this sample for each fixed a, i,
and k and then averaged these standard deviations over
all genes, nuclei, and moments tk. The resulting values
for each model are shown in Fig. 7a versus E.

The same tendency can be seen as for the averages
from Fig. 6. The models with quasistationary patterns
at the end of cycle 14 A have smaller dispersion of solu-
tions. The correlation coefficients corresponding to
Fig. 7a are r = 0.81 and r = 0.82 with and without mod-
els B2 and B4, respectively.

It should be noted that the analogous averaged stan-
dard deviation calculated in the sample of experimental
individual curves at moments tk equals 13.4. Therefore,
models Aj have better stability than models Bj, but their
stability still does not reach the experimentally
observed one.

Perturbation of Concentrations at Various Times

The perturbations of solutions at positive time
moments are supposed to model, to some extent, the
nucleus-to-nucleus noise present in the individual
experimental concentration curves [14]. It is known
from the stochastic modeling experience that, at least in
a stationary regime of gene expression, the stochastic
concentration values X group around the mean Xmean

according to the Poisson distribution law. This means
that the standard deviation is proportional to the root of

the mean: σ ~  [17]. For a given mean, we can
model the stochastic variable with such a distribution in
the simplest case as follows:

(5)

where ε is a random variable with a normal distribution
ε ~ N(0, σ), having zero mean and fixed standard devi-
ation σ.

Analysis of individual experimental concentration
curves for various proteins from FlyEx has not revealed
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Fig. 6. The mean F/F0 (points) and its standard deviation
(error bars) in the sample of solutions with perturbed initial
conditions in models A1–A3 and B1–B7 versus the values of
E, characterizing the proximity of unperturbed solutions to
attractors.
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a clear answer about the shape of the distribution

approximating the variability of  across nuclei.
Some expression patterns lead to the Poisson law, while
others involve the log-normal law, prescribing σ ~
Xmean. Some studies also indicate the presence of exper-
imental noise in such estimates, which cannot be elim-
inated at the moment.

Using this information, we applied the Poisson
noise in the form (5) to model the perturbations. The
solution values at fixed time moments ts, s = 1, …, S,
were perturbed in the following way:

, (6)

where ε ~ N(0, σ). The formula (6) coincides with (5)

in which the current solution values (ts) are taken
instead of Xmean for simplicity. This is possible because
the model equations can be interpreted as equations for
averages. Hence, if a solution of these equations is per-
turbed at moment ts – 1, then it will be to some extent

“restored” by moment ts, and (ts) will not differ
much from the genuine average, of course under the
assumption that ts – 1 and ts are sufficiently distant from
each other.

The perturbations were performed each two min-
utes, starting from t1 = 2 min and excluding moments
preceding the times for which the data were available.
This exclusion was done in order to reduce the influ-
ence of stochastic perturbations on the calculation of F
from (2). Therefore, we had in total S = 24 moments ts.
The following values for σ were used: σ = 0.1, σ = 0.5,
and σ = 1. An analysis of individual experimental
curves gave an approximate range 0.5 < σ < 1 for vari-
ous proteins in cycle 14 A. There were 500 random per-

v i
a

v i
a( )new ts( ) v i

a
ts( ) v i

a
ts( )ε+=

v i
a

v i
a

turbations performed according to (6) in each model at
each moment ts and for each σ.

The mean F/F0 with standard deviations calculated
in the samples of perturbed solutions with given σ val-
ues are plotted in Fig. 8 versus E from Table 2. The
results indicate that the correlation between the model
stability to perturbations and the quasistationarity of
solutions at gastrulation presented in Fig. 6 and 7a per-
sists when the perturbations are spread along the time
interval. The correlation coefficients corresponding to
Fig. 8 are r = 0.81 at σ = 0.1, r = 0.90 (σ = 0.5), and r =
0.76 (σ = 1). The coefficients r have similar values
when models B2 and B4 are discarded.

Some nonlinear effects in the behavior of perturbed
solutions under increased noise can be seen in Fig. 8.
Model B7 at small noise has maximal F/F0, which
means that in this case the model cannot be considered
as intermediate between the two types. The large dis-
persion for B7 indicates that even small perturbations
may lead to relatively large deviations of solutions from
the experimental data. At larger σ values, the place of
B7 changes according to the intermediate model status.
On the other hand, it is seen that solutions in A3 behave
similarly to those in the other Aj at small noise, but at
σ = 1 the mean F/F0 in this model essentially increases,
and A3 takes the boundary position between Aj and Bj .
Visual inspection of perturbed solutions in A3 suggests
that such behavior is mostly related with the instability
of the Kr and Gt patterns in the model at σ = 1.

The behavior of perturbed solutions is exemplified
in Fig. 9 for Kr in models A2 and B3. It is seen that the
Kr left border in B3 becomes unstable already at small
perturbations, while the right border does not apprecia-
bly change under noise. The larger perturbation ampli-
tudes lead to pronounced deformation of the Kr pattern
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in B3. The Kr pattern in A2 keeps its shape at all σ val-
ues, and only the dispersion around the mean pattern
increases.

Figure 7b presents the standard deviations of per-
turbed solutions averaged over all nuclei, genes, data
times, and σ values. The coefficient of correlation
between this measure of spread and E is in this case r =
0.77 (0.79 without B2 and B4). The figure also shows the
effect of model A3 shift described above.

Perturbation of Parameter Values

The perturbations of parameter values in the model
equations could be associated with the environmental
noise. We did not have any specific information about
the possible general distribution for such noise, and,

therefore, we applied the normal distribution. Again, it
was difficult to choose a unified amplitude for perturba-
tions of different parameters. We performed normally
distributed random perturbations of parameter values in
models Aj and Bj with standard deviations σ equal to 1,
5, and 10% of the unperturbed parameter values.
Denoting the parameter vector as q = {Ra, Da, λa, Tab,
ma, ha} with components qs, the perturbation scheme
had the form

(7)

There were 500 random perturbations performed
according to (7) in each model and for each σ value.
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Fig. 8. Same as in Fig. 6 but for the sample of solutions perturbed according to (6), at the three values of σ. Models B1–B7 are labeled
only by numbers for better visibility.
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The results are presented in Fig. 10 in terms of F/F0.
The correlation coefficients for mean F/F0 and E are r =
0.81 (σ = 0.01), r = 0.74 (σ = 0.05), and r = 0.71 (σ =
0.1). One can see that the correlation weakens as σ
grows, in particular, because of the rising instability of
model B7, which has the maximal F/F0 at σ = 0.1.

Noteworthy is the marked sensitivity of all models
to variation of the parameter values. It follows from
Fig. 10 that perturbation of all parameters even at σ =
0.01 increases the rms deviation of solutions from the data
by a factor of 2–2.5 in models Aj and 3–4 in models Bj.

The behavior of the Kr concentration at various per-
turbation amplitudes is shown in Fig. 11. Even at the
high solution variability, the mean concentration profile
in A2 preserves a relatively correct shape until σ = 0.1.

At the same time, the left border of the Kr expression
domain in B3 is almost destroyed at σ = 0.05.

We have also performed type (7) perturbations, but
only for parameters from two classes, q = {Ra, Da, λa}
and q = {Tab, ma, ha}. Two examples are shown in
Fig. 12 of how the mean F/F0 varies when the perturba-
tion amplitude is raised in models A2 and B3. The curves
corresponding to perturbations of all parameters and of
{Tab, ma, ha} almost coincide. Therefore, this parameter
class is most sensitive to the perturbations. On the other
hand, perturbations of {Ra, Da, λa} influence the solu-
tions considerably less. It follows from the figure that,
for example, solutions in A2 are absolutely stable in the
1% vicinity of parameter values in this class. This is not
true for B3.
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CONCLUSIONS

The results described here imply that the considered
model of segmentation gene expression allows the quasis-
tationary behavior of solutions at the end of cycle 14 A.
This particularly means that the reduction of embryo-to-
embryo variability in the expression patterns occurring by
the onset of gastrulation (Fig. 2) indeed can be mathemat-
ically interpreted as the canalization of trajectories with
different initial conditions and external factors to a single
attractor. The results on stability indicate that the model
with a quasistationary solution at gastrulation has better
stability against noise of various nature.

An obvious “biological function” of such an attrac-
tor in the operation of the gap gene system is to provide
a more precise and less variable positioning of the
expression patterns under the inevitable variations of
the embryo development conditions. This precision is
especially important because the gap genes are just one
step in the segmentation gene cascade, and their expres-
sion patterns determine the expression in the pair-rule
gene system. Therefore, error filtration in the pattern
positioning inside the cascade has a clear goal and must
be equipped with appropriate mechanisms. We believe
that the quasistationarity provides one of these mecha-
nisms.

On the other hand, such an intermediate role played
by the gap genes in the Drosophila early development
hides, up to some extent, the necessity for the patterns
at gastrulation to be close to the attractor. Indeed, only
the bounded time interval 0 ≤ t ≤ τ is biologically mean-
ingful in models Bj and Aj, and the dynamics only in this
time controls the basic properties of the pair-rule gene
expression. However, model (1) describes, in a sense,
the dynamics of average concentrations and does not
take into account the inevitable variation in solutions.
For a single solution of equations (1) at fixed parameter
values, there is no need in the asymptotic stability of the
t = τ solution at large times. The fact that the solution in

Bj significantly varies at times t > τ does not mean much
for the analysis of this “average” solution at t < τ. But
this property of model Bj leads to a large dispersion of
solutions under the variation of concentration and
parameter values occurring in reality. In this context,
the model dynamics at times t > τ becomes important
for correct model behavior at times 0 ≤ t ≤ τ. We must
emphasize that the times t > τ should not be related to
the corresponding physical time moments, but are con-
sidered only in the mathematical model.

Comparing the stability against various perturba-
tions in Bj and Aj , we conclude that these results support
the hypothesis that the proximity to attractor is neces-
sary for more precise expression pattern positioning
and, hence, for more robust “signal” transmission over
the segmentation gene cascade. The study of all pertur-
bation types (initial conditions, concentrations at times
t > 0, and parameter values) has revealed a strong cor-
relation between the quality of perturbed solutions,
defined by their similarity to the experimental data, and
the stationarity rate at times t > τ (0.71 ≤ r ≤ 0.90
depending on the situation). Models A1–A3 exhibit more
stable dynamics at times 0 ≤ t ≤ τ than models B1–B7.

Model B7 has played an important role in estimating
the correlation. This model occupies an intermediate
position between Aj and other Bj by the proximity of the
solution at gastrulation to the attractor. This intermedi-
ate nature of B7 is largely preserved in the solution
response to perturbations.

Finally, we should note that, despite the improved
stability of Aj, models of both types exhibit substantial
spreading of solutions under perturbation of initial con-
ditions and parameter values. This is partly explained
by the distributions chosen for the perturbations. In the
initial conditions case, for example, the mean experi-
mental Hb concentration curve in the 12th cycle differs

significantly from the initial condition for  in thev i
Hb
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models (Fig. 5). To some extent, however, such behav-
ior of perturbed solutions is an intrinsic property of the
model itself. Therefore, the use of attractors and their
basins of attraction is an important but not the final step
on the way of constructing a robust model of the gap
gene expression dynamics.

APPENDIX

COMPARISON OF PARAMETERS 
IN MODELS OF TWO TYPES

Table 1 contains the parameter values in models A1–
A3. The diffusion coefficients Da in the table correspond
to the values in cycle 14 A.

The parameter optimization in A3 differed from that
in A1 and A2 in two aspects. First, the experimental data
for Tll was not used in A3 for fitting at times t > τ. Sec-
ond, values h2 = h4 = h5 = –3.5 were fixed during opti-
mization in A3 (see Table 1).

The parameter values from Table 1 are similar to
those from models Bj in the order of magnitude. The
topology of gap gene interactions predicted by the
models is of special interest. The four genes hb, Kr, gt,
and kni are usually discussed in this context [10]. In
Table 3 we compare the signs of interaction of these
genes with each other and with cad, tll, and bcd in mod-
els Aj and B6. We compare Aj with B6 because, accord-
ing to [10], B6 is the most representative among all Bj in
terms of the gene interaction topology. Following [10],
we use the threshold value 0.005 to define the interac-
tion sign. Namely, we assume that gene b represses
gene a if Tab ≤ –0.005 (“–” sign in Table 3), activates it
if Tab ≥ 0.005 (“+”), and there is practically no interac-
tion if –0.005 < Tab < 0.005 (“0”). This threshold value

is chosen empirically, i.e., selected by numerical analy-
sis of model solutions.

It follows from the table that model B6 estimates the
influence of maternal genes bcd and cad as activation,
while these interactions can be repressive for some
genes in some Aj. In this aspect, model B6 is most sim-
ilar to A3, in which bcd represses only gt.

Based on the analysis of this subnetwork topology,
the authors of [9, 10] have concluded that the subnet-
work genes exhibit weak self-activation and mutual
repression. The same conclusion is valid in models Aj

with some exceptions. The main difference from model
B6 is provided by the hb self-regulation and the regula-
tion of gt by hb. At the same time, the topology in Bj

also does not fully satisfy the above conclusion, as gt
activates hb in these models. All models Aj estimate this
interaction as repression.
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